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Abstract

In this paper, a numerical technique––the thermal particle dynamics method (TPD)––is extended to study heat

conduction in granular media in the presence of stagnant interstitial fluids. The method, which generates a multi-

particle simulation by explicitly modeling many two-particle interactions, allows bed heterogeneities to be directly

included and dynamic temperature distributions to be obtained at the particle-level. Comparison with experimental

data shows that TPD yields quantitatively accurate values of the effective thermal conductivity without introducing new

adjustable parameters for a wide range of stagnant interstitial media. The model not only sheds light on fundamental

issues in heat conduction in particulate materials, but also provides a valuable test bed for existing continuous theories.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Gaining understanding of heat transport in granular

media from its microstructure is an old and important

problem in many different fields, such as, powder pro-

cessing, ceramics processing, powder metallurgy and

packed bed reactor design. The formation and evolution

of the microstructure within a particle packing is a dy-

namic process that involves a variety of different inter-

particle forces (in addition to gravity) [1]. This

microstructure, in turn, dictates the effective properties

of the collective heterogeneous material (solid particles

plus interstitial media) so that, ultimately, the individual

particle properties play an important role in determining

the bulk behavior of the system. In particular, the ef-

fective conductivity is strongly influenced by the contact

mechanics exhibited by the particles––which may be

elastic, plastic, elasto-plastic, visco-elastic, etc. [2].

Several theoretical and computational studies have

been performed which examine the effects of contact

deformation of smooth [3,4] and rough [2,5] elastic

particles on the effective thermal conductivity, both ex-

plicitly accounting for the interstitial medium [2,6,7] as

well as neglecting it (for example, assuming an intersti-

tial vacuum) [4,8,9]. A discrete simulation technique for

granular heat transfer, the thermal particle dynamics

(TPD) method [10,11] has been shown to successfully

predict the conductivity and transient temperature dis-

tribution of particle beds [10,11].

In this article the TPD technique is extended to in-

corporate the ability to model heat transport in partic-

ulate media in the presence of an interstitial fluid. While

calculating transient temperature distributions is then

possible, the focus here is on determining the effective

conductivity (at steady state), for the sake of comparison

with existing theories and experiments. In this context,

the effective conductivity represents the ability of the

system––particles plus fluid in the interstitial space––as a

whole to transfer heat in response to an imposed gra-

dient at the boundaries.

2. Thermal particle dynamics

The TPD simulation technique is based upon a

traditional particle dynamics (PD) technique (often
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referred to as the discrete or distinct element method

[12]) so that every particle is tracked individually to

determine trajectories, velocities, forces and tempera-

tures. This allows the determination of both mechanical

and transport properties of granular systems under

static or dynamic conditions. The particle trajectories

are obtained via explicit solution of Newton’s equations

of motion for every particle [12]. The forces on the

particles––aside from gravity––typically are determined

from contact mechanics considerations [13].

The key feature of TPD is that by incorporating

contact conductance theories many simultaneous two-

body interactions may be used to model heat transfer

in a system composed of many particles. In analogy

with PD, this description requires that the time-step

be chosen such that any disturbance (in this case a

change in a particle’s temperature) does not propa-

gate further than that particle’s immediate neighbors

within one time-step. While for this work we are con-

sidering particles in lasting contact, this criterion is

also satisfied in the majority of collision-dominated

flows, although the amount of heat transferred between

colliding particles under these conditions can be small

[14].

2.1. General method

In terms of the conductance approach to heat

transfer, the heat flow between the two particles (Fig. 1)

is given by

Qc ¼ Hc DTij; ð1Þ
where DTij ¼ Ti � Tj is the temperature difference be-

tween the mid-planes of the spheres, and Hc is the con-

tact conductance.

For smooth-elastic spheres in a vacuum, the contact

conductance depends on the contact radius a which may

be obtained from Hertz contact theory, so that the

conductance may be expressed as

Nomenclature

A area (m2)

a contact radius (m)

ac accomodation coefficient

c specific heat (J kg�1 K�1)

E� effective Young modulus (GPa)

Fn normal force (N)

g gravity (9.8 m s�2)

H height in a 2-D bed (m)

Hc contact conductance (Wm�2 K�1)

k thermal conductivity (Wm�1 K�1)

‘ characteristic length (m)

P pressure (Pa)

N number of contacts

Q heat transfer (W)

r particle radius (m)

S saturation

t time (s)

T temperature (K)

V volume (m3)

W width in a 2-D bed (m)

Greek symbols

a parameter in Eq. (21)

d parameter in Eq. (21)

� void fraction

q density (kgm�3)

m Poisson ratio

/ filling angle

Subscripts

c contact

eff effective

f fluid

g gas

i particle i

j particle j

l liquid

s solid

t total

Fig. 1. Heat conduction between two smooth-elastic spheres.
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Hc

ks
¼ 2

3Fnr�

4E�

� �1=3
¼ 2a; ð2Þ

where E� is the effective Young’s modulus for the two

particles, and r� is the geometric mean of the particle

radii. The evolution of the temperature of particle i (in

some average sense) may then be given as

dTi
dt

¼ Qi

qiciVi
; ð3Þ

where Ti is the temperature of particle i, Qi is the total

amount of heat transported to particle i from its

neighbor (particle j), and qiciVi is the particle’s ‘‘thermal

capacity’’.

If the temperature gradients are confined to the re-

gion close to the contact spot, such that the ratio of the

resistance inside the particle to the resistance between

the particles as determine by the Biot number is small

(i.e., Bi ¼ 2a=pr � 1), then the individual heat flows

between particles i and j ðQijÞ may be decoupled so that

the total heat flow Qi may be approximated as the sum

of the interactions of particle i with each of it’s neigh-

bors, j, as

Qi ¼
XN
j¼1

Qij: ð4Þ

The temperature of particle i, Ti, at time t þ Dt is cal-

culated from

T tþDt
i ¼ T t

i þ
XN
j¼1

DT tþDt
ij

¼ T t
i þ

XN
k¼1

T t
j

�
� T t

i

�
1

�
� exp

�
� Hc

qiciVi

�
Dt
�
:

ð5Þ

2.2. Interstitial fluids

The extension of TPD to include the effect of stagnant

interstitial fluids (assumed to be explicitly applicable for

small Rayleigh numbers; i.e., Ra � 1:0) is straightfor-

ward provided the following assumptions are met:

• the phases are assumed to be inert and thermally sta-

ble

• solid particles are non-porous

• the gas is insoluble in the liquid

• adsorption of the gas on the solid surface is negligible

• temperatures are continuous across all interfaces

• the conductivity of the interstitial fluid is small rela-

tive to that of the particle.

With these simplifications it is possible to assume that

the total thermal conduction may be obtained from

summing the contributions of each of the three mecha-

nisms (all acting in parallel) considered here; (1) through

the area of contact between particles, (2) through the gas

phase, (3) and through the liquid phase. Also, that heat

only flows between particles actually in contact since

conduction through the interstitial fluids across larger

gaps will be very slow. Therefore, the total contact

conductance can be expressed as

Ht ¼ Hc þ Hg þ Hl: ð6Þ

A general expression for the relative contributions of the

fluid phase to the total conductance can be determined

from the geometry of the system by

Hf ¼ kf
Af

‘f

� �
; ð7Þ

where Af is the area of contact––perpendicular to the

heat flow––of the (individual) fluid phase and ‘f is a

characteristic averaged length over which the flux ap-

plies. The problem then reduces to determining the areas

of contact Af of each of the respective interstitial fluid

phases as well as calculating the corresponding averaged

lengths ‘f in each of the cases considered. Once the total

conductance is determined; Hc in Eq. (5) is replaced by

Ht and the method of solution continues as described in

Section 2.1.

Masamune and Smith [15], Kunii and Smith [16],

Okazaki [17] and Yovanovich [7] have used similar

reasoning to develop correlations for the effective con-

ductivity of packed beds.

2.3. Interstitial gas

From the geometry of the system (see Fig. 2), Hg is

calculated as follows: For a unit cell (two spheres in

Fig. 2. Heat transfer model for particles in contact with a

stagnant gas.
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contact), the area exposed to the gas can be estimated

as half of the particle’s surface area minus the area of

solid–solid contact and is given by

Ag ¼ 2pr2 1

�
� 1

2

a
r

� �2
�
: ð8Þ

The averaged length ‘g over which the heat flux applies

can be determined as

‘g ¼
r2 1� p

4

� 	
r � a

: ð9Þ

The conductance can then be expressed as

Hg ¼ k�g
Ag

‘g

� �
¼ k�g

2p 1� 1
2

a
r


 �2h i
ðr � aÞ

1� p
4

2
4

3
5; ð10Þ

where k�g is the gas conductivity appropriate for use over

finite lengths (not necessarily large with respect to the

mean free path of the gas molecules). This finite-length

conductivity, k�g , has been related to the conductivity in

an infinite gaseous medium, kg, as a function of the in-

terstitial gas pressure by Kennard [18]. Kennard’s ex-

pression is developed for heat flow in the gas space

between two parallel plates separated by a fixed distance

[18], l, to yield

k�g ¼
kg

1þ M
l


 �� 	 : ð11Þ

Following the approach of Masamune and Smith [15],

we will use this expression for the conductivity between

sphere surfaces by simply replacing l with our averaged

length, ‘g (see Eq. (9)). The quantity M represents a

length commonly referred to as the temperature jump

distance [18] which can be estimated as

M ¼ 2� ac1
ac1

�
þ 2� ac2

ac2

�
c

c þ 1

1

Pr
K; ð12Þ

where ac1 and ac2 are the thermal accommodation co-

efficients of the two surfaces and c; Pr and K are the ratio

of the specific heats, the Prandtl number, and the mo-

lecular mean free path, respectively. The mean free path

K of the gas molecules is given by

K ¼ kBTffiffiffi
2

p
pd2

gP
; ð13Þ

where P is the gas pressure, T is the temperature, dg the
diameter of the gas molecules and kB is the Boltzman

constant. It is important to note that the relations in

Eqs. (11)–(13) introduce one empirical parameter,

namely the accommodation coefficient ac. In keeping

with the spirit of the TPD simulations, we do not use

this constant as a freely adjustable parameter, instead we

take it from results previously reported in the literature

[18,19].

2.4. Interstitial liquid

Fig. 3 shows a unit cell for two particles in contact

with a liquid bridge between them. Heat transfer is as-

sumed to occur in one direction.

From the geometry of the system (see Fig. 3) the area

for the liquid Al, the gas Ag and the characteristic lengths

‘g and ‘l are determined as follows. If the filling angle /
for all particles in contact is approximately constant and

fixed, and the particles are under a normal force (see Fig.

1), the interfacial surface area in contact with the liquid

(modified from Rose [20]) is expressed as

Al ¼ 4pr2
p
2

�h
� /

�
tan/ � 1ð � cos/Þ

i

	 1� cos/
cos/

� �
� pa2: ð14Þ

The characteristic length ‘l for the heat flux through the

liquid phase can be determined as

‘l ¼
rcapr � r2ð/Þ

2
þ rcap

ffiffiffiffiffiffiffiffiffiffiffi
r2�r2cap

p
2

� �

rcap � a
; ð15Þ

where rcap is given as

rcap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð1� cos/Þð1þ cos/Þ

p
: ð16Þ

By a similar geometrical analysis, the surface area in

contact with the gas, Ag, is the surface area of the par-

ticle minus the area for the liquid Al and that of the

solid–solid contact spot, so that

Ag ¼ 2pr2 � Al � pa2: ð17Þ

The characteristic length ‘g for the heat flux through the

gas phase can be determined as

‘g ¼
r2 1� p

4

� 	
� rcapr � r2ð/Þ

2
þ rcap

ffiffiffiffiffiffiffiffiffiffiffi
r2�r2cap

p
2

� �

r � rcap
: ð18Þ

Fig. 3. Heat transfer model for particles in contact with a

stagnant liquid.
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3. Results and discussion

The emphasis in this work is on the development of a

simulation technique to predict the effective thermal

conductivity from first principles thus, we primarily treat

particle beds composed of well characterized materials

such as steel and glass in the presence of common gases

and liquids. Unless otherwise stated, the solid properties

used in this study are those of SS-304 and soda-lime

glass (see Table 1).

For the two-dimensional (2-D) experiments the sim-

ulation consists of a mono-disperse system of perfectly

smooth spheres forming a 2-D pseudo-regular packed

bed (one particle deep) that has side lengths of roughly

30 particle diameters (to yield about 1100 particles). The

particles are compressed at a known force either parallel

or perpendicular to the direction of heating. All material

properties are taken directly from the literature and

consist solely of the thermophysical properties of the

solids considered and the physico-chemical properties of

the fluids. The bottom and top walls are kept at high and

low temperature, respectively. Both the left and right

walls are insulated. No effect of gravity is considered

(i.e., the bed is assumed to be horizontal). It should be

noted that there are no freely adjustable parameters in

our simulation, however some of the correlations used in

the estimation of fluid properties involved empirical

parameters as described by the authors [21–24].

A typical initial condition for the 2-D simulations is

obtained by perturbing a hexagonal lattice (by removing

random particles from the lattice) and allowing the bed

to resettle under an imposed load using a tradition iso-

thermal PD simulation (particle mechanics only). The

three-dimensional (3-D) beds tend not to form perfect

crystalline structures and so no such measures are need

for those simulations. The thermal conductivity for the

various beds (2-D and 3-D) pressed at different loads

with or without the presence of a fluid are determined

using the steady-state values of the heat flows. This

procedure mimics the most commonly used experimen-

tal techniques for the determination of effective thermal

conductivity [25]. For 2-D (rectangular) beds, the effec-

tive conductivity is determined from

keff ¼ � Q
Wdp
H

� �
DT

; ð19Þ

where Q is obtained by summing the heat flows into/out

of the particles in contact with the boundaries. It should

be noted here that we ostensibly consider both low

temperatures (on the order of 25 �C) and small tem-

perature differences. In this way we may neglect radia-

tion effects as well as variations in the solid phase

conductivity. On the other hand, variation in the con-

ductivity of the interstitial medium may be significant

even at small temperature differences and these are not

ignored (see Sections 3.1 and 3.2).

For the 3-D case a bed is created which mimics the

well-known co-axial cylinder method and contains

roughly 10,000 particles (being about 11 particles in

radius and 25 long). The heat source here is represented

by a core of radius R1 comprised of particles which are

maintained at a (high) constant temperature. The con-

centric cylindrical shell of radius R2 that serves as heat

sink is kept at a constant and lower temperature. The

heat flow at equilibrium is then used to determine the

effective conductivity of the bed as follows:

keff ¼ �Q lnðR2=R1Þ
2pH DT

: ð20Þ

Fig. 4 illustrates the setup as well as a snapshot of the

temperature distribution at equilibrium for both the 2-D

and 3-D computational experiments.

3.1. Gas–solid systems

The solids used in this part of the study are glass and

SS-304 and the interstitial gases include air, CO2 and

helium. Beds ranging from 1000 to 10,000 particles have

been used in the simulations with all the relevant ther-

mal and physical properties taken from the literature.

The accommodation coefficient ac in Eq. (12), is a

function of both the gas and the solid surface properties.

Based on the experimental data available [18,19], the

following values for ac have been assumed: 0.95 for air,

1.0 for CO2 and 0.3 for helium. Similar values have been

used by Masamune and Smith [26], Zeng et al. [27] and

Molerus [28].

3.1.1. Effect of gas pressure

Fig. 5 illustrates the effect of the interstitial gas

pressure on thermal conductivity for a 2-D bed of steel

particles at a constant load. The sharp increase with

pressure is due to a transition from free-molecule con-

duction (when the mean-free path is large with respect

to the mean separation) for which k�g is directly pro-

portional to the pressure, to a regime dominated by

Table 1

Parameters used in the simulations

Parameter SS-304 Soda-lime glass

Density (kgm�3) 7500 2600

Poisson ratio 0.29 0.25

Young’s modulus (GPa) 193 70

Particle radius (m) 3:0	 10�3 3:0	 10�3

Thermal diffusivity (m2 s�1) 3:95	 10�6 5:1	 10�7

Thermal conductivity

(Wm�1 K�1)

15.0 1.1

Heat capacity (J kg�1 K�1) 506.0 800

Applied load (kg) 1.5–165 1.5–165

Friction coefficient 0.29 0.29
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molecular collisions in which k�g becomes independent of

pressure and k�g ’ kg (and the mean-free path is small

compared with the mean separation) [26,29]. One should

note that, under the conditions examine here (up to at-

mospheric pressure), the mean free path of Helium re-

mains large compared to the mean particle separation.

Experimental results qualitatively similar to those in Fig.

5 have been reported by Masamune and Smith [15,26],

Bauer and Schl€uunder [19].
Masamune and Smith [15] have proposed a semi-

empirical correlation for calculating the effective con-

ductivity of packed beds in the presence of gases that

incorporates essentially the same mechanisms consid-

ered in our TPD simulations. In terms of their notation

the equation is written as

keff ¼ a�kg þ
ð1� a�Þð1� dÞ

/
k�g
þ 1�/

kg

þ ð1� a�Þdks: ð21Þ

In Eq. (21) the terms on the right side represents the

contribution of the (1) conduction in the void space, (2)

a series path involving the solid and gas phases and, (3)

conduction through the area of contact, respectively.

The predictions based on this model are compared with

those of a TPD simulation in Fig. 5. In Eq. (21) d is

regarded as a specific parameter for each type of particle

and is related by an empirical expression (Eq. (15) in

their paper) to the contact area, whose value is obtained

by extrapolating the conductivity to zero pressure

(vacuum conductivity). Using the extrapolated value at

zero pressure as determined from the TPD simulations

in calculating the d parameter in Masamune’s model it is

possible to obtain a good quantitative agreement be-

tween the correlation and the data predicted by TPD as

shown in Fig. 5.

3.1.2. Effect of external load

The effect of air pressure on particle beds compressed

at three different loads is shown in Fig. 6. The results in

Fig. 6 show that the external loading affects primarily

the conductivity of the solid phase––the value of the

effective conductivity extrapolated at zero pressure. It is

expected that the significance of this difference will vary

as the interparticle friction varies and stress chains

within the materials become more or less stable (see Ref.

[30]). All the profiles of effective conductivity reach a

limiting value that is directly dependent on the effec-

tive conductivity at vacuum conditions. Note however

that as the load increases the effect of loading on the

solid phase conductivity also seem to reach a saturation

Fig. 4. Snapshot of the 2-D and 3-D computational setups for the determination of effective conductivity.

Fig. 5. Predicted thermal conductivity in a 2-D packed bed as a

function of pressure of the filling gas. Symbols indicate TPD

simulations, the continuous line the predictions based on

Masamune and Smith [15] correlation.
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value––the separation of the curves at higher loads be-

comes smaller. A qualitative comparison with experi-

mental data reported by Hadley [29] and Pratt [31]

indicates that the shapes of the curves are similar.

3.2. Liquid–gas–solid systems

This set of numerical experiments are carried out

with differing liquid bridge volumes of glass and SS-304

using water, glycerin and ethanol as interstitial fluids.

Knowing both the volume of the liquid bridges and the

number of contacts (bridges) per particle, the bed satu-

ration is easily calculated. Furthermore, note that all the

physico-chemical properties of the fluids as a function of

temperature are taken from the literature [21,23].

3.2.1. Effect of saturation

Fig. 7 shows the variation of the effective thermal

conductivity with fluid saturation. An increase of satu-

ration degree up to about 10% results in a steep increase

of the effective conductivity. Further increase of the

saturation degree gives rise to higher values, however the

rate of change is reduced. A simple interpretation for

this observation can be made. Due to the fact that the

resistance through the small solid contact spot is much

higher than the one through the fluid cross-section, even

a small liquid bridge can give rise to a steep increase in

the effective conductivity, initially. In contrast, at higher

saturations due to the curvature of the solid, an increase

in the filling angle of the liquid bridge results in a small

change in the cross section of the liquid bridge. There-

fore, the increase of the effective conductivity becomes

less pronounced at higher saturations. The predicted

values in Fig. 7 are in reasonable agreement with the

experimental observations provided by Okasaki [17] and

B€uussing and Bart [32].

3.2.2. Effect of external load

Fig. 8 illustrates the evolution of the effective thermal

conductivity as a function of external load for a packed

bed filled with spheres of SS-304 in the presence of air (at

constant pressure) and water as the wetting fluid (at

constant degree of saturation). As one might expect, the

effect of an externally imposed load becomes less sig-

nificant as the conductivity of the interstitial medium

increases (i.e., from vacuum to gas to liquid).

Fig. 9 illustrates the relative contributions of the

different mechanisms of heat transfer considered in this

study, namely contact conductance, conduction through

the gas phase and conduction through the liquid be-

tween particles, as a function of the external load. Note

that, at low load and high saturation, the contribution

of the heat flow due to contact conductance, Qc, repre-

sents a relatively small percentage of the total heat

transferred, but that this value increases significantly

with either an increase in the level of external loading

imposed or a decrease in the bed saturation. Moreover,

the case examined in this figure represents a water/air/ss-

304 system where the ratio of solid conductivity to liquid

conductivity is relatively large. The effect of varying this

ratio is explored in Section 3.2.3.

Fig. 9(b) shows that the contribution by contact

conductance––in beds filled with only a stagnant gas––

represents a significant fraction of the total heat when a

Fig. 6. Predicted thermal conductivity in a 3-D packed bed as a

function of pressure of the filling gas highlighting the effect of

external load. Note that the results are qualitatively similar to

the 2-D curves in Fig. 5.

Fig. 7. Predicted thermal conductivity in a 3-D packed bed as a

function of liquid saturation.
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moderate to high external load is imposed. Therefore, by

changing the external load on a packed bed it is possible

to alter the relative contributions of the different mech-

anisms involved and increase the effective conductivity

(see Fig. 6).

3.2.3. Comparison with correlations and experimental

data

A comparison between experimental values collected

from literature and a typical correlation proposed by

Hadley [29] is presented in Fig. 10.

The values predicted by TPD agree reasonably well

both with experimental observations and with the semi-

empirical correlation of Hadley. This suggests that the

proposed method correctly reflects the effects of the

mechanisms considered. It is worth mentioning that

none of the experimental studies used for comparison

explicitly report the load imposed on the samples used in

their experimental measurements. The TPD simulated

data used for comparison in Fig. 10 are based on pre-

dictions based on a 3-D packed bed with an external

load of 10 kg. Therefore, we expect that this fact may

introduce some under or over-prediction since, as illus-

trated in Fig. 8, the effect of the external load on the

effective thermal conductivity may be significant. In

general, the values predicted from TPD seem to deviate

Fig. 8. Thermal conductivity in a 2-D packed bed as a function of load both parallel and perpendicular to the direction of the applied

load. (a) Under vacuum, and in the presence of (b) gas (c) liquid plus gas.

Fig. 10. Experimental and predicted values of the effective

conductivity.

Fig. 9. Relative contributions of the heat transfer mechanisms in a 2-D packed bed to the overall heat transfer; (a) unsaturated bed (b)

stagnant gas only.
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more from the experimental observations as the ratio

ks=kf gets smaller. This behavior is not surprising since

the model is built on the assumption that ks=kf � 1. As

this ratio becomes smaller two effects become significant

and cause the model to break down: heat transfer be-

tween non-contacting particles becomes comparable to

that through the solid phase; the Bi is no longer small

causing multi-particle heat transfer to become important

and resulting in significant over-prediction of the con-

ductivity by our model (see Fig. 10).

However, it is important to note the wide range of

conductivities over which the model has been success-

fully applied, as well as the variety of fluids that have

been used. Therefore, the present model can be used––

within its limitations––to predict the results for a variety

of measurements. The experimental data collected by

Crane and Vachon [33], Prasad et al. [34] and Nozad

et al. [35] has been used for comparison. Whenever

possible the data used in the simulation corresponds

closely with the data provided by the authors. For the

diameter of the particles, a value of 3 mm was assumed

when this variable was not specified.

4. Conclusions

The present work represents an attempt to treat both

consolidated and unconsolidated beds of particles using

first principles and a simple formalism. Note that some

of the results mentioned here in the context of the heat

transport problem have their analogues for other kind of

transport problems (i.e., electric, mass transport), so

that similar approaches may be applicable.

In this work, the TPD method––which provides both

mechanical and thermal information about granular

packings––has been extended to incorporate the effects

of stagnant fluids. In particular, this technique is em-

ployed to simulate heat conduction in packed beds of

particles and our results are compared to both experi-

ments and theoretical predictions from the literature.

Despite the simplicity of TPD and the idealized condi-

tions used, good qualitative agreement for the predicted

values of the effective thermal conductivity are obtained

without requiring any freely adjustable parameters.

It has been demonstrated that for ks=kf � 1, TPD

provides good qualitative and quantitative agreement

between measured and calculated values of the effective

conductivity for a wide variety of materials and for

packed beds at different loads in the presence of both

liquid and/or gases.

As presented in this work, the TPD method considers

conduction through a bed of identical, elastic, smooth

particles in the presence of stagnant interstitial fluids;

however, this method is eminently extensible. Differing

contact mechanics, and therefore contact conductance,

can be easily included to assess the effect of particle

roughness and/or plasticity. Including variations in

particle mechanical and thermal properties as a function

of temperature is also easily achieved. Perhaps more

interesting, however, is the fact that, being built upon a

granular flow simulation, TPD is useful for studying

heat transfer in moving granular materials as well

(where characterization of the changing microstructure

is nearly impossible). The extension to incorporate fluid

flow is currently under development.
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